Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651522

RESUMO

Inhibition of hypoxanthine-guanine-xanthine phosphoribosyltransferase activity decreases the pool of 6-oxo and 6-amino purine nucleoside monophosphates required for DNA and RNA synthesis, resulting in a reduction in cell growth. Therefore, inhibitors of this enzyme have potential to control infections, caused by Plasmodium falciparum and Plasmodium vivax, Trypanosoma brucei, Mycobacterium tuberculosis, and Helicobacter pylori. Five compounds synthesized here that contain a purine base covalently linked by a prolinol group to one or two phosphonate groups have Ki values ranging from 3 nM to >10 µM, depending on the structure of the inhibitor and the biological origin of the enzyme. X-ray crystal structures show that, on binding, these prolinol-containing inhibitors stimulated the movement of active site loops in the enzyme. Against TBr in cell culture, a prodrug exhibited an EC50 of 10 µM. Thus, these compounds are excellent candidates for further development as drug leads against infectious diseases as well as being potential anticancer agents.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36981709

RESUMO

BACKGROUND: This paper reports on the implementation and evaluation of a strategy to promote collaborations and team science among investigators at the Research Centers in Minority Institutions (RCMI). The strategy presented in this paper was a hands-on workshop that allowed the application of strategic team science through structured dialogue, asset sharing, and systematic exploration of opportunities for collaboration. METHODS: The workshop was attended by more than 100 participants, including RCMI and non-RCMI investigators, practice-based research network (PBRN) supplement program directors, and an NIH Institute on Minority Health and Health Disparities Program Officer. RESULTS: A post-workshop survey was administered to collect participant feedback, assess the relevance of the workshop to the participants' professional development goals, and gauge the applicability of the tool as a support strategy to promote collaborative research. Most of the participants acknowledged that the session met the conference objectives (95.8%), and 93.7% noted that the workshop, to a high degree, met their personal goals and objectives. During the workshop, participants shared 35 resources they were willing and able to offer for prospective collaborative projects. CONCLUSION: The experience reported and evaluated in this paper paves the way to understanding methods for disseminating effective strategies for inter-institutional collaborations for the sustainable growth and operation of PBRNs.


Assuntos
Pesquisa Interdisciplinar , Pesquisa Translacional Biomédica , Humanos , Pesquisa Translacional Biomédica/métodos , Estudos Prospectivos , Grupos Minoritários , Saúde das Minorias
3.
J Med Chem ; 65(5): 4030-4057, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35175749

RESUMO

Pathogens such as Plasmodium and Trypanosoma spp. are unable to synthesize purine nucleobases. They rely on the salvage of these purines and their nucleosides from the host cell to synthesize the purine nucleotides required for DNA/RNA production. The key enzymes in this pathway are purine phosphoribosyltransferases (PRTs). Here, we synthesized 16 novel acyclic nucleoside phosphonates, 12 with a chiral center at C-2', and eight bearing a second chiral center at C-6'. Of these, bisphosphonate (S,S)-48 is the most potent inhibitor of the Plasmodium falciparum and P. vivax 6-oxopurine PRTs and the most potent inhibitor of two Trypanosoma brucei (Tbr) 6-oxopurine PRTs yet discovered, with Ki values as low as 2 nM. Crystal structures of (S,S)-48 in complex with human and Tbr 6-oxopurine PRTs show that the inhibitor binds to the enzymes in different conformations, providing an explanation for its potency and selectivity (i.e., 35-fold in favor of the parasite enzymes).


Assuntos
Antimaláricos , Organofosfonatos , Parasitos , Pentosiltransferases/metabolismo , Animais , Antimaláricos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Nucleosídeos/química , Nucleosídeos/farmacologia , Organofosfonatos/química , Organofosfonatos/farmacologia , Plasmodium falciparum , Purinonas
4.
J Am Chem Soc ; 143(44): 18536-18547, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34661406

RESUMO

Peptides have potential to be developed into immune checkpoint inhibitors, but the target interfaces are difficult to inhibit. Here, we explored an approach to mimic the binding surface of PD-1 to design inhibitors. Mimicking native PD-1 resulted in a mimetic with no activity. However, mimicking an affinity-optimized PD-1 resulted in the peptide mimetic MOPD-1 that displayed nanomolar affinity to PD-L1 and could inhibit PD-1:PD-L1 interactions in both protein- and cell-based assays. Mutagenesis and structural characterization using NMR spectroscopy and X-ray crystallography revealed that binding residues from the high affinity PD-1 are crucial for the bioactivity of MOPD-1. Furthermore, MOPD-1 was extremely stable in human serum and inhibited tumor growth in vivo, suggesting it has potential for use in cancer immunotherapy. The successful design of an inhibitor of PD-1:PD-L1 using the mimicry approach described herein illustrates the value of placing greater emphasis on optimizing the target interface before inhibitor design and is an approach that could have broader utility for the design of peptide inhibitors for other complex protein-protein interactions.


Assuntos
Antineoplásicos/farmacologia , Antígeno B7-H1/metabolismo , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/metabolismo , Sequência de Aminoácidos , Animais , Antineoplásicos/química , Antígeno B7-H1/genética , Feminino , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais , Receptor de Morte Celular Programada 1/genética
5.
Molecules ; 26(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577034

RESUMO

Cyclotides have attracted great interest as drug design scaffolds because of their unique cyclic cystine knotted topology. They are classified into three subfamilies, among which the bracelet subfamily represents the majority and comprises the most bioactive cyclotides, but are the most poorly utilized in drug design applications. A long-standing challenge has been the very low in vitro folding yields of bracelets, hampering efforts to characterize their structures and activities. Herein, we report substantial increases in bracelet folding yields enabled by a single point mutation of residue Ile-11 to Leu or Gly. We applied this discovery to synthesize mirror image enantiomers and used quasi-racemic crystallography to elucidate the first crystal structures of bracelet cyclotides. This study provides a facile strategy to produce bracelet cyclotides, leading to a general method to easily access their atomic resolution structures and providing a basis for development of biotechnological applications.


Assuntos
Ciclotídeos , Sequência de Aminoácidos , Cristalografia , Cistina , Dobramento de Proteína
6.
Sci Rep ; 10(1): 17398, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060678

RESUMO

Plantacyclin B21AG is a circular bacteriocin produced by Lactiplantibacillus plantarum B21 which displays antimicrobial activity against various Gram-positive bacteria including foodborne pathogens, Listeria monocytogenes and Clostridium perfringens. It is a 58-amino acid cyclised antimicrobial peptide, with the N and C termini covalently linked together. The circular peptide backbone contributes to remarkable stability, conferring partial proteolytic resistance and structural integrity under a wide temperature and pH range. Here, we report the first crystal structure of a circular bacteriocin from a food grade Lactobacillus. The protein was crystallised using the hanging drop vapour diffusion method and the structure solved to a resolution of 1.8 Å. Sequence alignment against 18 previously characterised circular bacteriocins revealed the presence of conserved charged and aromatic residues. Alanine substitution mutagenesis validated the importance of these residues. Minimum inhibitory concentration analysis of these Ala mutants showed that Phe8Ala and Trp45Ala mutants displayed a 48- and 32-fold reduction in activity, compared to wild type. The Lys19Ala mutant displayed the weakest activity, with a 128-fold reduction. These experiments demonstrate the relative importance of aromatic and cationic residues for the antimicrobial activity of plantacyclin B21AG and by extension, other circular bacteriocins sharing these evolutionarily conserved residues.


Assuntos
Anti-Infecciosos/farmacologia , Bacteriocinas/química , Bacteriocinas/farmacologia , Sequência de Aminoácidos , Bacteriocinas/genética , Cristalografia por Raios X , Testes de Sensibilidade Microbiana , Mutagênese Sítio-Dirigida , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Angew Chem Int Ed Engl ; 59(28): 11273-11277, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32270580

RESUMO

Ruthenium-catalysed azide-alkyne cycloaddition (RuAAC) provides access to 1,5-disubstituted 1,2,3-triazole motifs in peptide engineering applications. However, investigation of this motif as a disulfide mimetic in cyclic peptides has been limited, and the structural consequences remain to be studied. We report synthetic strategies to install various triazole linkages into cyclic peptides through backbone cyclisation and RuAAC cross-linking reactions. These linkages were evaluated in four serine protease inhibitors based on sunflower trypsin inhibitor-1. NMR and X-ray crystallography revealed exceptional consensus of bridging distance and backbone conformations (RMSD<0.5 Å) of the triazole linkages compared to the parent disulfide molecules. The triazole-bridged peptides also displayed superior half-lives in liver S9 stability assays compared to disulfide-bridged peptides. This work establishes a foundation for the application of 1,5-disubstituted 1,2,3-triazoles as disulfide mimetics.


Assuntos
Dissulfetos/química , Mimetismo Molecular , Peptídeos Cíclicos/química , Triazóis/química , Sequência de Aminoácidos , Cristalografia por Raios X , Ciclização , Ressonância Magnética Nuclear Biomolecular , Rutênio/química
8.
Acta Crystallogr D Struct Biol ; 75(Pt 3): 283-295, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30950399

RESUMO

Disulfide-bond-forming (DSB) oxidative folding enzymes are master regulators of virulence that are localized to the periplasm of many Gram-negative bacteria. The archetypal DSB machinery from Escherichia coli K-12 consists of a dithiol-oxidizing redox-relay pair (DsbA/B), a disulfide-isomerizing redox-relay pair (DsbC/D) and the specialist reducing enzymes DsbE and DsbG that also interact with DsbD. By contrast, the Gram-negative bacterium Wolbachia pipientis encodes just three DSB enzymes. Two of these, α-DsbA1 and α-DsbB, form a redox-relay pair analogous to DsbA/B from E. coli. The third enzyme, α-DsbA2, incorporates a DsbA-like sequence but does not interact with α-DsbB. In comparison to other DsbA enzymes, α-DsbA2 has ∼50 extra N-terminal residues (excluding the signal peptide). The crystal structure of α-DsbA2ΔN, an N-terminally truncated form in which these ∼50 residues are removed, confirms the DsbA-like nature of this domain. However, α-DsbA2 does not have DsbA-like activity: it is structurally and functionally different as a consequence of its N-terminal residues. Firstly, α-DsbA2 is a powerful disulfide isomerase and a poor dithiol oxidase: i.e. its role is to shuffle rather than to introduce disulfide bonds. Moreover, small-angle X-ray scattering (SAXS) of α-DsbA2 reveals a homotrimeric arrangement that differs from those of the other characterized bacterial disulfide isomerases DsbC from Escherichia coli (homodimeric) and ScsC from Proteus mirabilis (PmScsC; homotrimeric with a shape-shifter peptide). α-DsbA2 lacks the shape-shifter motif and SAXS data suggest that it is less flexible than PmScsC. These results allow conclusions to be drawn about the factors that are required for functionally equivalent disulfide isomerase enzymatic activity across structurally diverse protein architectures.


Assuntos
Proteínas de Bactérias/química , Dissulfetos/química , Isomerases de Dissulfetos de Proteínas/química , Wolbachia/enzimologia , Escherichia coli K12/enzimologia , Espalhamento a Baixo Ângulo
9.
Methods Mol Biol ; 1860: 115-144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30317501

RESUMO

The interaction between the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein syntaxin (Sx) and regulatory partner Sec/Munc18 (SM) protein is a critical step in vesicle fusion. The exact role played by SM proteins, whether positive or negative, has been the topic of much debate. High-resolution structures of the SM:Sx complex have shown that SM proteins can bind syntaxin in a closed fusion incompetent state. However, in vitro and in vivo experiments also point to a positive regulatory role for SM proteins that is inconsistent with binding syntaxin in a closed conformation. Here we present protocols we used for the expression and purification of the SM proteins Munc18a and Munc18c and syntaxins 1 and 4 along with procedures used for small-angle X-ray and neutron scattering that showed that syntaxins can bind in an open conformation to SM proteins. We also describe methods for chemical cross-linking experiments and detail how this information can be combined with scattering data to obtain low-resolution structural models for SM:Sx protein complexes.


Assuntos
Proteínas Munc18/metabolismo , Ligação Proteica , Proteínas Qa-SNARE/metabolismo , Espalhamento a Baixo Ângulo , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Deutério/química , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Fusão de Membrana , Proteínas Munc18/química , Proteínas Munc18/isolamento & purificação , Difração de Nêutrons , Estrutura Terciária de Proteína , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Difração de Raios X
10.
J Nat Prod ; 81(11): 2436-2445, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30345754

RESUMO

Orbitides are small cyclic peptides with a diverse range of therapeutic bioactivities. They are produced by many plant species, including those of the Jatropha genus. Here, the objective was to provide new structural information on orbitides to complement the growing knowledge base on orbitide sequences and activities by focusing on three Jatropha orbitides: ribifolin (1), pohlianin C (7), and jatrophidin (12). To determine three-dimensional structures, racemic crystallography, an emerging structural technique that enables rapid crystallization of biomolecules by combining equal amounts of the two enantiomers, was used. The high-resolution structure of ribifolin (0.99 Å) was elucidated from its racemate and showed it was identical to the structure crystallized from its l-enantiomer only (1.35 Å). Racemic crystallography was also used to elucidate high-resolution structures of pohlianin C (1.20 Å) and jatrophidin (1.03 Å), for which there was difficulty forming crystals without using racemic mixtures. The structures were used to interpret membrane permeability data in PAMPA and a Caco-2 cell assay, showing they had poor permeability. Overall, the results show racemic crystallography can be used to obtain high-resolution structures of orbitides and is useful when enantiopure samples are difficult to crystallize or solution structures from NMR are of low resolution.


Assuntos
Jatropha/química , Peptídeos Cíclicos/química , Proteínas de Plantas/química , Células CACO-2 , Permeabilidade da Membrana Celular , Cristalografia por Raios X , Humanos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/metabolismo , Proteínas de Plantas/síntese química , Proteínas de Plantas/metabolismo
11.
PLoS One ; 12(10): e0187302, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29088285

RESUMO

The efficient delivery of cellular cargo relies on the fusion of cargo-carrying vesicles with the correct membrane at the correct time. These spatiotemporal fusion events occur when SNARE proteins on the vesicle interact with cognate SNARE proteins on the target membrane. Regulatory Munc18 proteins are thought to contribute to SNARE interaction specificity through interaction with the SNARE protein Syntaxin. Neuronal Munc18a interacts with Syntaxin1 but not Syntaxin4, and adipocyte Munc18c interacts with Syntaxin4 but not Syntaxin1. Here we show that this accepted view of specificity needs revision. We find that Munc18c interacts with both Syntaxin4 and Syntaxin1, and appears to bind "non-cognate" Syntaxin1 a little more tightly than Syntaxin4. Munc18a binds Syntaxin1 and Syntaxin4, though it interacts with its cognate Syntaxin1 much more tightly. We also observed that when bound to non-cognate Munc18c, Syntaxin1 captures its neuronal SNARE partners SNAP25 and VAMP2, and Munc18c can bind to pre-formed neuronal SNARE ternary complex. These findings reveal that Munc18a and Munc18c bind Syntaxins differently. Munc18c relies principally on the Syntaxin N-peptide interaction for binding Syntaxin4 or Syntaxin1, whereas Munc18a can bind Syntaxin1 tightly whether or not the Syntaxin1 N-peptide is present. We conclude that Munc18a and Munc18c differ in their binding interactions with Syntaxins: Munc18a has two tight binding modes/sites for Syntaxins as defined previously but Munc18c has just one that requires the N-peptide. These results indicate that the interactions between Munc18 and Syntaxin proteins, and the consequences for in vivo function, are more complex than can be accounted for by binding specificity alone.


Assuntos
Adipócitos/metabolismo , Proteínas Munc18/metabolismo , Neurônios/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Fusão de Membrana , Ligação Proteica
12.
PLoS One ; 12(8): e0183366, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28841669

RESUMO

Vesicular transport of cellular cargo requires targeted membrane fusion and formation of a SNARE protein complex that draws the two apposing fusing membranes together. Insulin-regulated delivery and fusion of glucose transporter-4 storage vesicles at the cell surface is dependent on two key proteins: the SNARE integral membrane protein Syntaxin4 (Sx4) and the soluble regulatory protein Munc18c. Many reported in vitro studies of Munc18c:Sx4 interactions and of SNARE complex formation have used soluble Sx4 constructs lacking the native transmembrane domain. As a consequence, the importance of the Sx4 C-terminal anchor remains poorly understood. Here we show that soluble C-terminally truncated Sx4 dissociates more rapidly from Munc18c than Sx4 where the C-terminal transmembrane domain is replaced with a T4-lysozyme fusion. We also show that Munc18c appears to inhibit SNARE complex formation when soluble C-terminally truncated Sx4 is used but does not inhibit SNARE complex formation when Sx4 is C-terminally anchored (by a C-terminal His-tag bound to resin, by a C-terminal T4L fusion or by the native C-terminal transmembrane domain in detergent micelles). We conclude that the C-terminus of Sx4 is critical for its interaction with Munc18c, and that the reported inhibitory role of Munc18c may be an artifact of experimental design. These results support the notion that a primary role of Munc18c is to support SNARE complex formation and membrane fusion.


Assuntos
Proteínas Munc18/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Ligação Proteica , Proteínas Qa-SNARE/química
13.
Artigo em Inglês | MEDLINE | ID: mdl-27669284

RESUMO

African American women have among the highest HIV/AIDS and hepatitis B and C incidence rates in the United States, especially among those homeless or incarcerated. The objective of this study was to evaluate the Health Enlightenment, Awareness and Living Intervention, designed to decrease HIV/AIDS, hepatitis and related risky behaviors. The thirteen-session intervention was implemented among homeless and formerly incarcerated low-income African American women, ages 18 to 55, in Atlanta, Georgia from 2006 to 2010. A single group repeated measures study design was employed and consisted of a pre-test (n = 355) group, an immediate post-test (n = 228) group with a response rate of 64%, and a six-month follow up (n = 110) group with response rate of 48%, completing a 135-item survey. Paired-sample t-tests, McNemar tests, and repeated measures ANOVA were applied to compare survey results. Participants demonstrated statistically significant increases in hepatitis B and C knowledge over time (p < 0.001). Statistically significant decreases were also reported for unprotected sex in exchange for money, drugs or shelter (p = 0.008), and sex under the influence of drugs or alcohol (p < 0.001). Reported substance use decreased with statistical significance for alcohol (p = 0.011), marijuana (p = 0.011), illegal drugs (p = 0.002), and crack/cocaine (p = 0.003). Findings broaden the evidence base related to the effectiveness of HIV/AIDS and hepatitis risk reduction interventions designed for homeless and previously incarcerated African American women.


Assuntos
Infecções por HIV/prevenção & controle , Hepatite B/prevenção & controle , Hepatite C/prevenção & controle , Adolescente , Adulto , Negro ou Afro-Americano/estatística & dados numéricos , Feminino , Georgia , Pessoas Mal Alojadas/estatística & dados numéricos , Humanos , Pessoa de Meia-Idade , Comportamento de Redução do Risco , Assunção de Riscos , Adulto Jovem
14.
J Am Chem Soc ; 138(17): 5706-13, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27064294

RESUMO

Enantiomeric forms of BTD-2, PG-1, and PM-1 were synthesized to delineate the structure and function of these ß-sheet antimicrobial peptides. Activity and lipid-binding assays confirm that these peptides act via a receptor-independent mechanism involving membrane interaction. The racemic crystal structure of BTD-2 solved at 1.45 Å revealed a novel oligomeric form of ß-sheet antimicrobial peptides within the unit cell: an antiparallel trimer, which we suggest might be related to its membrane-active form. The BTD-2 oligomer extends into a larger supramolecular state that spans the crystal lattice, featuring a steric-zipper motif that is common in structures of amyloid-forming peptides. The supramolecular structure of BTD-2 thus represents a new mode of fibril-like assembly not previously observed for antimicrobial peptides, providing structural evidence linking antimicrobial and amyloid peptides.


Assuntos
Amiloide/química , Anti-Infecciosos/química , Peptídeos/química , Dicroísmo Circular , Cristalografia por Raios X , Conformação Proteica , Ressonância de Plasmônio de Superfície
15.
Protein Eng Des Sel ; 28(10): 467-80, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26271488

RESUMO

Targeting more than one molecule in multifactorial diseases involving several disease mediators may provide improved therapeutic efficacy. Psoriasis is a multifactorial disease in which interleukin (IL)-6 and IL-23 are important disease mediators because they facilitate development of Th17 cells; widely accepted to be associated with psoriasis. To meet the need for new therapeutics, we aimed to create a clinically relevant bispecific drug, by combining the inhibitory properties of anti-IL-6 and anti-IL-23 antibodies, exhibiting high affinity, high stability and the ability to be produced in high yield. The bispecific molecule AZ17 was created by combining high affinity binding domains originating from monoclonal antibodies targeting human IL-6 and IL-23. To allow for high and efficient production, AZ17 was assembled by site-specific bioconjugation from two individual single chain fragment variables that were synthesized separately in Escherichia coli. To improve stability and extend pharmacokinetics, a flexible poly-ethylene glycol molecule was used as linker. In preclinical psoriasis models, AZ17 reduced IL-23-induced ear inflammation and improved psoriasis in a xenograft transplantation model where psoriasis skin is transplanted onto immune-deficient mice. The data presented here suggest AZ17 to be a promising drug candidate in psoriasis and other inflammatory diseases associated with Th17 cell development.


Assuntos
Anticorpos Biespecíficos/imunologia , Interleucina-23/imunologia , Interleucina-6/imunologia , Terapia de Alvo Molecular , Psoríase/tratamento farmacológico , Psoríase/imunologia , Transplante Heterólogo , Animais , Anticorpos Biespecíficos/farmacocinética , Anticorpos Biespecíficos/uso terapêutico , Especificidade de Anticorpos , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Ratos
16.
Angew Chem Int Ed Engl ; 53(42): 11236-41, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25168664

RESUMO

Cyclic disulfide-rich peptides have exceptional stability and are promising frameworks for drug design. We were interested in obtaining X-ray structures of these peptides to assist in drug design applications, but disulfide-rich peptides can be notoriously difficult to crystallize. To overcome this limitation, we chemically synthesized the L- and D-forms of three prototypic cyclic disulfide-rich peptides: SFTI-1 (14-mer with one disulfide bond), cVc1.1 (22-mer with two disulfide bonds), and kB1 (29-mer with three disulfide bonds) for racemic crystallization studies. Facile crystal formation occurred from a racemic mixture of each peptide, giving structures solved at resolutions from 1.25 Što 1.9 Å. Additionally, we obtained the quasi-racemic structures of two mutants of kB1, [G6A]kB1, and [V25A]kB1, which were solved at a resolution of 1.25 Šand 2.3 Å, respectively. The racemic crystallography approach appears to have broad utility in the structural biology of cyclic peptides.


Assuntos
Dissulfetos/química , Peptídeos Cíclicos/química , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Desenho de Fármacos , Modelos Moleculares , Dados de Sequência Molecular , Estereoisomerismo
17.
J Biol Chem ; 289(29): 19869-80, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24860094

RESUMO

The multidrug resistant bacterium Acinetobacter baumannii is a significant cause of nosocomial infection. Biofilm formation, that requires both disulfide bond forming and chaperone-usher pathways, is a major virulence trait in this bacterium. Our biochemical characterizations show that the periplasmic A. baumannii DsbA (AbDsbA) enzyme has an oxidizing redox potential and dithiol oxidase activity. We found an unexpected non-covalent interaction between AbDsbA and the highly conserved prokaryotic elongation factor, EF-Tu. EF-Tu is a cytoplasmic protein but has been localized extracellularly in many bacterial pathogens. The crystal structure of this complex revealed that the EF-Tu switch I region binds to the non-catalytic surface of AbDsbA. Although the physiological and pathological significance of a DsbA/EF-Tu association is unknown, peptides derived from the EF-Tu switch I region bound to AbDsbA with submicromolar affinity. We also identified a seven-residue DsbB-derived peptide that bound to AbDsbA with low micromolar affinity. Further characterization confirmed that the EF-Tu- and DsbB-derived peptides bind at two distinct sites. These data point to the possibility that the non-catalytic surface of DsbA is a potential substrate or regulatory protein interaction site. The two peptides identified in this work together with the newly characterized interaction site provide a novel starting point for inhibitor design targeting AbDsbA.


Assuntos
Acinetobacter baumannii/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla , Humanos , Modelos Moleculares , Fator Tu de Elongação de Peptídeos/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Isomerases de Dissulfetos de Proteínas/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletricidade Estática , Termodinâmica
18.
J Biol Chem ; 288(50): 36141-8, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24169696

RESUMO

MCoTI-II is a head-to-tail cyclic peptide with potent trypsin inhibitory activity and, on the basis of its exceptional proteolytic stability, is a valuable template for the design of novel drug leads. Insights into inhibitor dynamics and interactions with biological targets are critical for drug design studies, particularly for protease targets. Here, we show that the cyclization and active site loops of MCoTI-II are flexible in solution, but when bound to trypsin, the active site loop converges to a single well defined conformation. This finding of reduced flexibility on binding is in contrast to a recent study on the homologous peptide MCoTI-I, which suggested that regions of the peptide are more flexible upon binding to trypsin. We provide a possible explanation for this discrepancy based on degradation of the complex over time. Our study also unexpectedly shows that the cyclization loop, not present in acyclic homologues, facilitates potent trypsin inhibitory activity by engaging in direct binding interactions with trypsin.


Assuntos
Ciclotídeos/química , Ciclotídeos/metabolismo , Momordica/química , Inibidores da Tripsina/química , Inibidores da Tripsina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Cristalografia por Raios X , Ciclização , Modelos Moleculares , Dados de Sequência Molecular , Tripsina/metabolismo
19.
Antioxid Redox Signal ; 19(13): 1494-506, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23642141

RESUMO

AIMS: The prototypical protein disulfide bond (Dsb) formation and protein refolding pathways in the bacterial periplasm involving Dsb proteins have been most comprehensively defined in Escherichia coli. However, genomic analysis has revealed several distinct Dsb-like systems in bacteria, including the pathogen Salmonella enterica serovar Typhimurium. This includes the scsABCD locus, which encodes a system that has been shown via genetic analysis to confer copper tolerance, but whose biochemical properties at the protein level are not defined. The aim of this study was to provide functional insights into the soluble ScsC protein through structural, biochemical, and genetic analyses. RESULTS: Here we describe the structural and biochemical characterization of ScsC, the soluble DsbA-like component of this system. Our crystal structure of ScsC reveals a similar overall fold to DsbA, although the topology of ß-sheets and α-helices in the thioredoxin domains differ. The midpoint reduction potential of the CXXC active site in ScsC was determined to be -132 mV versus normal hydrogen electrode. The reactive site cysteine has a low pKa, typical of the nucleophilic cysteines found in DsbA-like proteins. Deletion of scsC from S. Typhimurium elicits sensitivity to copper (II) ions, suggesting a potential involvement for ScsC in disulfide folding under conditions of copper stress. INNOVATION AND CONCLUSION: ScsC is a novel disulfide oxidoreductase involved in protection against copper ion toxicity.


Assuntos
Proteínas Periplásmicas/química , Proteínas Periplásmicas/metabolismo , Salmonella typhimurium/química , Salmonella typhimurium/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Domínio Catalítico , Cobre/química , Cobre/metabolismo , Cobre/farmacologia , Cristalografia por Raios X , Modelos Moleculares , Oxirredução , Proteínas Periplásmicas/genética , Conformação Proteica , Salmonella typhimurium/efeitos dos fármacos , Tiorredoxinas/genética
20.
PLoS One ; 8(12): e83499, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391775

RESUMO

Vesicle fusion is an indispensable cellular process required for eukaryotic cargo delivery. The Sec/Munc18 protein Munc18c is essential for insulin-regulated trafficking of glucose transporter4 (GLUT4) vesicles to the cell surface in muscle and adipose tissue. Previously, our biophysical and structural studies have used Munc18c expressed in SF9 insect cells. However to maximize efficiency, minimize cost and negate any possible effects of post-translational modifications of Munc18c, we investigated the use of Escherichia coli as an expression host for Munc18c. We were encouraged by previous reports describing Munc18c production in E. coli cultures for use in in vitro fusion assay, pulldown assays and immunoprecipitations. Our approach differs from the previously reported method in that it uses a codon-optimized gene, lower temperature expression and autoinduction media. Three N-terminal His-tagged constructs were engineered, two with a tobacco etch virus (TEV) or thrombin protease cleavage site to enable removal of the fusion tag. The optimized protocol generated 1-2 mg of purified Munc18c per L of culture at much reduced cost compared to Munc18c generated using insect cell culture. The purified recombinant Munc18c protein expressed in bacteria was monodisperse, monomeric, and functional. In summary, we developed methods that decrease the cost and time required to generate functional Munc18c compared with previous insect cell protocols, and which generates sufficient purified protein for structural and biophysical studies.


Assuntos
Proteínas Munc18/biossíntese , Animais , Códon/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Camundongos , Complexos Multiproteicos/isolamento & purificação , Complexos Multiproteicos/metabolismo , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Ligação Proteica , Engenharia de Proteínas , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas SNARE/metabolismo , Células Sf9 , Spodoptera , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...